Recent studies in the interdisciplinary area of photonics, free electrons, and quantum physics open up new applications, such as free-electron light sources, dielectric laser accelerators (DLAs), and optical manipulation of electron pulses. In particular, DLAs utilize the strong field in laser to accelerate the electrons, which provide high acceleration gradient, compact size, and potentially low cost. DLAs have a wide range of applications in scientific research, industry, and medical diagnosis and treatment. With progress in the control of free electrons, researchers have demonstrated the wave-function engineering of free electrons, which promotes the application of free electrons for quantum manipulation and quantum sensing.
In this presentation, I will talk about this exciting research area and share my studies on the design of dielectric laser accelerators, electron compression with optical beat note, and quantum free-electron–atom interaction.
Speaker's Bio
Dr. Zhexin Zhao did her PhD study on nanophotonics at Stanford University. She received the bachelor degree in electronic engineering from Tsinghua University, Beijing, China, in 2015, and the M.S., and Ph.D. degrees in electrical engineering (with Ph.D. minor in physics) from Stanford University, U.S., in 2018 and 2021, respectively. Her research interests include photonic design, electromagnetic theory, light-matter interaction, laser-based electron acceleration and modulation, quantum physics, and optical design for augmented reality.